Search results for "Nabla symbol"
showing 10 items of 16 documents
The Cauchy problem for linear growth functionals
2003
In this paper we are interested in the Cauchy problem $$ \left\{ \begin{gathered} \frac{{\partial u}}{{\partial t}} = div a (x, Du) in Q = (0,\infty ) x {\mathbb{R}^{{N }}} \hfill \\ u (0,x) = {u_{0}}(x) in x \in {\mathbb{R}^{N}}, \hfill \\ \end{gathered} \right. $$ (1.1) where \( {u_{0}} \in L_{{loc}}^{1}({\mathbb{R}^{N}}) \) and \( a(x,\xi ) = {\nabla _{\xi }}f(x,\xi ),f:{\mathbb{R}^{N}}x {\mathbb{R}^{N}} \to \mathbb{R} \)being a function with linear growth as ‖ξ‖ satisfying some additional assumptions we shall precise below. An example of function f(x, ξ) covered by our results is the nonparametric area integrand \( f(x,\xi ) = \sqrt {{1 + {{\left\| \xi \right\|}^{2}}}} \); in this case …
Cosmic magnetic fields with masclet: an application to galaxy clusters
2020
We describe and test a new version of the adaptive mesh refinement (AMR) cosmological code MASCLET. The new version of the code includes all the ingredients of its previous version plus a description of the evolution of the magnetic field under the approximation of the ideal magneto-hydrodynamics (MHD). To preserve the divergence-free condition of MHD, the original divergence cleaning algorithm of Dedner et al. (2002) is implemented. We present a set of well-known 1D and 2D tests, such as several shock-tube problems, the fast rotor and the Orszag-Tang vortex. The performance of the code in all the tests is excellent with estimated median relative errors of $\nabla \cdot {\bf B}$ in the 2D t…
On finite element approximation of the gradient for solution of Poisson equation
1981
A nonconforming mixed finite element method is presented for approximation of ?w with Δw=f,w| r =0. Convergence of the order $$\left\| {\nabla w - u_h } \right\|_{0,\Omega } = \mathcal{O}(h^2 )$$ is proved, when linear finite elements are used. Only the standard regularity assumption on triangulations is needed.
Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators
2017
Let \begin{document}$A∈{\rm{Sym}}(n× n)$\end{document} be an elliptic 2-tensor. Consider the anisotropic fractional Schrodinger operator \begin{document}$\mathscr{L}_A^s+q$\end{document} , where \begin{document}$\mathscr{L}_A^s: = (-\nabla·(A(x)\nabla))^s$\end{document} , \begin{document}$s∈ (0, 1)$\end{document} and \begin{document}$q∈ L^∞$\end{document} . We are concerned with the simultaneous recovery of \begin{document}$q$\end{document} and possibly embedded soft or hard obstacles inside \begin{document}$q$\end{document} by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain \begin{document}$Ω$\end{document} associated with \begin{document}$\mathscr{L}_A^s+q$\end{docume…
H�lder continuity of solutions to quasilinear elliptic equations involving measures
1994
We show that the solutionu of the equation $$ - div(|\nabla u|^{p - 2} \nabla u) = \mu $$ is locally β-Holder continuous provided that the measure μ satisfies the condition μ(B(x,r))⩽Mrn − p + α(p − 1) for some α>β. A corresponding result for more general operators is also proven.
A weak comparison principle for solutions of very degenerate elliptic equations
2012
We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u\in K\), where \(K\subset \mathbb{R }^N\) is a Borel set containing the origin.
A Viscosity Equation for Minimizers of a Class of Very Degenerate Elliptic Functionals
2013
We consider the functional $$J(v) = \int_\varOmega\bigl[f\bigl(|\nabla v|\bigr) - v\bigr] dx, $$ where Ω is a bounded domain and f:[0,+∞)→ℝ is a convex function vanishing for s∈[0,σ], with σ>0. We prove that a minimizer u of J satisfies an equation of the form $$\min\bigl(F\bigl(\nabla u, D^2 u\bigr), |\nabla u|-\sigma\bigr)=0 $$ in the viscosity sense.
The ∞-Eigenvalue Problem
1999
. The Euler‐Lagrange equation of the nonlinear Rayleigh quotient \( \left(\int_{\Omega}|\nabla u|^{p}\,dx\right) \bigg/ \left(\int_{\Omega}|u|^{p}\,dx\right)\) is \( -\div\left( |\nabla u|^{p-2}\nabla u \right)= \Lambda_{p}^{p} |u |^{p-2}u,\) where \(\Lambda_{p}^{p}\) is the minimum value of the quotient. The limit as \(p\to\infty\) of these equations is found to be \(\max \left\{ \Lambda_{\infty}-\frac{|\nabla u(x)|}{u(x)},\ \ \Delta_{\infty}u(x)\right\}=0,\) where the constant \(\Lambda_{\infty}=\lim_{p\to\infty}\Lambda_{p}\) is the reciprocal of the maximum of the distance to the boundary of the domain Ω.
De Giorgi–Nash–Moser Theory
2015
We consider the second-order, linear, elliptic equations with divergence structure $$\mathrm{div} (\mathbb{A}(x)\nabla u(x))\;=\;\sum\limits^n_{i,j=1}\;\partial_{x_{i}}(a_{ij}(x)\partial_{x_{j}}u(x))\;=\;0.$$
Nonlinear diffusion in transparent media: the resolvent equation
2017
Abstract We consider the partial differential equation u - f = div ( u m ∇ u | ∇ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.