Search results for "Nabla symbol"

showing 10 items of 16 documents

The Cauchy problem for linear growth functionals

2003

In this paper we are interested in the Cauchy problem $$ \left\{ \begin{gathered} \frac{{\partial u}}{{\partial t}} = div a (x, Du) in Q = (0,\infty ) x {\mathbb{R}^{{N }}} \hfill \\ u (0,x) = {u_{0}}(x) in x \in {\mathbb{R}^{N}}, \hfill \\ \end{gathered} \right. $$ (1.1) where \( {u_{0}} \in L_{{loc}}^{1}({\mathbb{R}^{N}}) \) and \( a(x,\xi ) = {\nabla _{\xi }}f(x,\xi ),f:{\mathbb{R}^{N}}x {\mathbb{R}^{N}} \to \mathbb{R} \)being a function with linear growth as ‖ξ‖ satisfying some additional assumptions we shall precise below. An example of function f(x, ξ) covered by our results is the nonparametric area integrand \( f(x,\xi ) = \sqrt {{1 + {{\left\| \xi \right\|}^{2}}}} \); in this case …

CombinatoricsCauchy problemCauchy's convergence testDomain (ring theory)UniquenessNabla symbolCauchy's integral theoremCauchy's integral formulaMathematicsCauchy product
researchProduct

Cosmic magnetic fields with masclet: an application to galaxy clusters

2020

We describe and test a new version of the adaptive mesh refinement (AMR) cosmological code MASCLET. The new version of the code includes all the ingredients of its previous version plus a description of the evolution of the magnetic field under the approximation of the ideal magneto-hydrodynamics (MHD). To preserve the divergence-free condition of MHD, the original divergence cleaning algorithm of Dedner et al. (2002) is implemented. We present a set of well-known 1D and 2D tests, such as several shock-tube problems, the fast rotor and the Orszag-Tang vortex. The performance of the code in all the tests is excellent with estimated median relative errors of $\nabla \cdot {\bf B}$ in the 2D t…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Adaptive mesh refinementFOS: Physical sciencesOrder (ring theory)Astronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsMagnetic fieldComputational physicsVortexSpace and Planetary ScienceGalaxy formation and evolutionNabla symbolMagnetohydrodynamicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Galaxy clusterAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

On finite element approximation of the gradient for solution of Poisson equation

1981

A nonconforming mixed finite element method is presented for approximation of ?w with Δw=f,w| r =0. Convergence of the order $$\left\| {\nabla w - u_h } \right\|_{0,\Omega } = \mathcal{O}(h^2 )$$ is proved, when linear finite elements are used. Only the standard regularity assumption on triangulations is needed.

Computational MathematicsRate of convergenceApplied MathematicsMathematical analysisOrder (ring theory)Mixed finite element methodNabla symbolSuperconvergencePoisson's equationFinite element methodMathematicsExtended finite element methodNumerische Mathematik
researchProduct

Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators

2017

Let \begin{document}$A∈{\rm{Sym}}(n× n)$\end{document} be an elliptic 2-tensor. Consider the anisotropic fractional Schrodinger operator \begin{document}$\mathscr{L}_A^s+q$\end{document} , where \begin{document}$\mathscr{L}_A^s: = (-\nabla·(A(x)\nabla))^s$\end{document} , \begin{document}$s∈ (0, 1)$\end{document} and \begin{document}$q∈ L^∞$\end{document} . We are concerned with the simultaneous recovery of \begin{document}$q$\end{document} and possibly embedded soft or hard obstacles inside \begin{document}$q$\end{document} by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain \begin{document}$Ω$\end{document} associated with \begin{document}$\mathscr{L}_A^s+q$\end{docume…

PhysicsControl and OptimizationApproximation property02 engineering and technology01 natural sciences010101 applied mathematicsCombinatoricssymbols.namesakeMathematics - Analysis of PDEsOperator (computer programming)Modeling and SimulationBounded functionDomain (ring theory)0202 electrical engineering electronic engineering information engineeringsymbolsDiscrete Mathematics and Combinatorics020201 artificial intelligence & image processingPharmacology (medical)Nabla symbolUniqueness0101 mathematicsAnisotropyAnalysisSchrödinger's catInverse Problems & Imaging
researchProduct

H�lder continuity of solutions to quasilinear elliptic equations involving measures

1994

We show that the solutionu of the equation $$ - div(|\nabla u|^{p - 2} \nabla u) = \mu $$ is locally β-Holder continuous provided that the measure μ satisfies the condition μ(B(x,r))⩽Mrn − p + α(p − 1) for some α>β. A corresponding result for more general operators is also proven.

Functional analysisMathematical analysisHölder conditionNabla symbolMeasure (mathematics)AnalysisPotential theoryMathematicsPotential Analysis
researchProduct

A weak comparison principle for solutions of very degenerate elliptic equations

2012

We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u\in K\), where \(K\subset \mathbb{R }^N\) is a Borel set containing the origin.

Discrete mathematicsPure mathematicsApplied MathematicsDegenerate energy levelsWeak comparison principleMathematics::Analysis of PDEs35B51 35J70 35D30 49K20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicavery degenerate elliptic equationsFOS: MathematicsPoint (geometry)Nabla symbolBorel setDivergence (statistics)Analysis of PDEs (math.AP)MathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

A Viscosity Equation for Minimizers of a Class of Very Degenerate Elliptic Functionals

2013

We consider the functional $$J(v) = \int_\varOmega\bigl[f\bigl(|\nabla v|\bigr) - v\bigr] dx, $$ where Ω is a bounded domain and f:[0,+∞)→ℝ is a convex function vanishing for s∈[0,σ], with σ>0. We prove that a minimizer u of J satisfies an equation of the form $$\min\bigl(F\bigl(\nabla u, D^2 u\bigr), |\nabla u|-\sigma\bigr)=0 $$ in the viscosity sense.

Viscosity solutions minimizer of convex functionals very degenerate elliptic functionalsClass (set theory)Pure mathematicsSettore MAT/05 - Analisi MatematicaBounded functionMathematical analysisDomain (ring theory)Degenerate energy levelsNabla symbolViscosity solutionConvex functionMathematics
researchProduct

The ∞-Eigenvalue Problem

1999

. The Euler‐Lagrange equation of the nonlinear Rayleigh quotient \( \left(\int_{\Omega}|\nabla u|^{p}\,dx\right) \bigg/ \left(\int_{\Omega}|u|^{p}\,dx\right)\) is \( -\div\left( |\nabla u|^{p-2}\nabla u \right)= \Lambda_{p}^{p} |u |^{p-2}u,\) where \(\Lambda_{p}^{p}\) is the minimum value of the quotient. The limit as \(p\to\infty\) of these equations is found to be \(\max \left\{ \Lambda_{\infty}-\frac{|\nabla u(x)|}{u(x)},\ \ \Delta_{\infty}u(x)\right\}=0,\) where the constant \(\Lambda_{\infty}=\lim_{p\to\infty}\Lambda_{p}\) is the reciprocal of the maximum of the distance to the boundary of the domain Ω.

Mechanical EngineeringMathematical analysisMathematics::Analysis of PDEsOmegaCombinatoricsMathematics (miscellaneous)Infinity LaplacianDomain (ring theory)Nabla symbolRayleigh quotientAnalysisEigenvalues and eigenvectorsQuotientMathematicsArchive for Rational Mechanics and Analysis
researchProduct

De Giorgi–Nash–Moser Theory

2015

We consider the second-order, linear, elliptic equations with divergence structure $$\mathrm{div} (\mathbb{A}(x)\nabla u(x))\;=\;\sum\limits^n_{i,j=1}\;\partial_{x_{i}}(a_{ij}(x)\partial_{x_{j}}u(x))\;=\;0.$$

Sobolev spacePhysicsPure mathematicsWeak solutionStructure (category theory)Nabla symbolDivergence (statistics)Harnack's inequalitySobolev inequality
researchProduct

Nonlinear diffusion in transparent media: the resolvent equation

2017

Abstract We consider the partial differential equation u - f = div ⁡ ( u m ⁢ ∇ ⁡ u | ∇ ⁡ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.

Dirichlet problemPure mathematicsTotal variation; transparent media; linear growth Lagrangian; comparison principle; Dirichlet problems; Neumann problems35J25 35J60 35B51 35B99Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsBoundary (topology)01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsBounded functionBounded variationFOS: MathematicsNeumann boundary conditionUniquenessNabla symbol0101 mathematicsAnalysisAnalysis of PDEs (math.AP)ResolventMathematics
researchProduct